

Linux Device Drivers – Foundational

Course Syllabus

Linux Device Drivers – Foundational

Linux is one of the most widely used Operating Systems in Embedded Systems Design for a diverse
range of applications like IoT, Automotive, Healthcare, Consumer Electronics and Smart Gadgets. Linux
OS by itself has a layered architecture that spans across Application, System and the Kernel space with
each layer having a specific role and access permissions to the various components and interfaces of
the Linux system.

Device drivers is one such vital component of the kernel that enables access and operation on the
hardware devices that are connected to the system. This course provides you an in-depth
understanding of Linux device drivers and its interface to the kernel space and user-space for
interacting with the hardware devices. At the end of this course, you would have gained mastery over
the kernel subsystems and acquired necessary skills to do efficient kernel programming primarily
focusing on customization and integration of device drivers to the Linux kernel space

40+ hrs – 17hr Lecture, 23hr Lab Sessions

 Aspiring graduates seeking job opportunities in embedded Linux development
 Professionals interested in up-skilling themselves in Linux Device Drivers
 Embedded Linux developers who wish to become proficient in Linux device driver development

• Course delivered by seasoned industry experts with more than 17 years of experience in embedded
software design and development

• Course contents designed exclusively to give deep insights into kernel level programming and Linux
device drivers

• Well-structured and modular program framework to ensure participants gain mastery in embedded
system design and development concepts

• Online and interactive sessions with a balanced mix of theory, hands-on assignments, and mini
projects

Course Title

Course Overview

Course Duration

Course Eligibility

Course Highlights

• Ubuntu or Linux host PC for development
• Basic Knowledge of Linux commands – command memento and vi memento
• Basic Knowledge of Embedded Linux Systems
• Basic programming skills in C and Assembly Language
• Good Know-How of working with embedded COTS boards

• BeagleBone Black
• Ubuntu 20.04 LTS Host Machine
• Candidates must have a laptop/desktop with minimum configuration: - 64-bit processor - 8GB RAM

- 200GB HDD space - Minimum 2Mbps internet connection

1. Introduction to Linux Device Drivers
2. Character Driver Model
3. Interrupts, Concurrency and Memory Management
4. Block Driver Model
5. Network Driver Model
6. Driver Debugging Techniques
7. Embedded Device Driver Frameworks

 Module Title
Introduction to Linux Device Drivers

 Module Overview
This module begins with a brief introduction to the Linux architecture and the various subsystems it
is comprised of. We explore the Linux User space Vs Kernel space components and how a Linux
device driver fits into the kernel space. We will learn LDD as a kernel module which can be developed,
compiled off-the shelf from the kernel source. We will gain hands-on experience by writing our first
device driver and loading it onto a running kernel. We shall also learn the different types of device
drivers and their characteristic features

Course Pre-requisites

Course Requirements

Course Contents

Module Contents

Module - 1

 Module Topics

 Overview of Linux Architecture
o A brief History of Linux OS
o Components of Linux Systems
o User Space Vs Kernel Space
o Role of a Device Driver
o Overview of Driver Stacks

 Linux Kernel Modules
o Categories of LKM – LDD, Filesystem Drivers, System Calls
o Advantages of LKM
o Kernel Modules Vs User Programs
o Kernel Modules Vs Device Drivers

 Types of Linux Device Drivers
o Character Drivers
o Block Drivers
o Network Drivers

 Setting up of Ubuntu / Hardware Board
 Writing the First Driver

o Module Information, Init, Exit, Probe, Params, printk, dmesg
o Building, Running, Loading and Unloading of Device Driver

 Module Title
Character Driver Model

 Module Overview
In this module we shall learn the characteristic features of character drivers which is the most suitable
class of driver for majority of simple hardware devices. We shall learn about major numbers, minor
numbers, and device numbers and how to register and unregister drivers using these unique numbers
for devices. We shall also learn the typical driver entry points which include the open, close, read and
write interfaces through which user space programs get access to the device for various operations.
Apart from the device entry points we shall also explore the other file operation functions like ioctl,
mmap, llseek etc.

 Module Topics
 Overview of Character Drivers

o Features and examples of character drivers
o Major and Minor Numbers

 Driver registration

Module - 2

o Device Numbers
o Register and Unregister

 Driver file entry points
o Open, Close, Read, Write, Ioctl

 Driver file structure
 Device file operations

o open, close, read, write, Ioctl, mmap, llseek, poll, select
 Writing a Simple Character Device Driver

 Module Title
Interrupts, Concurrency and Memory Management

 Module Overview

In this module we continue to understand the concepts of device drivers for interrupt handling,
concurrency conditions and memory management. We will begin the discussion on interrupts and
understand the ways to implement and install an ISR with the kernel. We shall also discuss how the
ISRs are split into Top Halves and Bottom Halves for processing of interrupts in kernel context. We
dwell deep into understanding various concurrency and race conditions that can occur in a
multiprocessing environment due to simultaneous access of resources. Finally, we shall learn about
memory management techniques in Linux systems. We shall understand the intricacies of virtual and
physical memory mapping and allocation concepts of the Linux OS

 Module Topics

 Understanding Linux Interrupt Handlers
o Installing and Implementing an ISRTop Halves and Bottom Halves
o Tasklets , Workqueue, Softirq and Threaded IRQ
o Hotplug and Udev events

 Concurrency and Race Conditions
o Semaphores and Mutex
o Completions
o Spinlocks
o Kernel Timers

 Introduction to Linux Memory Management
o Linux Memory Model – Virtual Vs Physical Address
o Address Translation & Page Tables
o Page Allocator
o Mpool & Mmap
o Port Mapped and Memory Mapped IO

Module - 3

o DMA

 Module Title
Block Driver model

 Module Overview

This module provides an in-depth understanding of the Linux block drivers which is the standard
framework employed by most of the memory and storage device drivers. We begin with a discussion
on the Block driver architecture and various device operations permitted to use with block devices.
We shall gain some hands-on experience by writing a simple block driver and analyse its working by
loading and registering it with a running kernel. Finally, we shall explore the MMC/SD framework
available in kernel sources and understand its working along with typical storage devices like SD
cards

 Module Topics
 Overview of Architecture of a Block Driver
 Linux Block I/O Layer
 Linux Block Device Operations
 Registering and Unregistering the Block driver
 Request Processing
 Writing a Simple Block Driver
 Overview of MMC/SD framework

 Module Title
Network Driver Model

 Module Overview

This module focuses on Linux networking system and understanding the network driver stack and
the kernel interfaces while working with ethernet controllers for transmission and reception of
network packets. We shall discuss some of the important data structures of network devices and its
configuration parameters. We shall also discuss in detail the concepts for interfacing with the physical
layer and initialization of the MDIO and MAC. We shall then discuss the driver support for handling
link state changes in the ethernet link. Finally, we will explore some of the standard tools available
in the Linux systems for configuration, statistics and throughput measurement of ethernet interfaces

 Module Topics

Module - 4

Module – 5

 Overview of Network Driver Architecture
 Understanding net_device and sk_buf
 Packet Transmission and Reception
 Communicating with PHY
 MDIO Initialization
 MAC address Resolution
 Handling Link State Changes
 Ethtool and iperf for statistics information

 Module Title
 Module Title

Driver Debugging Techniques

 Module Overview
In this module we introduce the various tools, techniques, and tips for debugging code at kernel
level. Kernel code brings about its own challenges and limitations for debug support and we shall
learn the various facilities kernel programmers have at their disposal for being able to debug and fix
buggy codes in kernel space. We begin with understanding and observing the debug mechanisms
using printing and logging features available in the kernel system. We shall next proceed with
understanding the various system interfaces available in the kernel space for query and response
which provides a snapshot of the running system. We shall learn to debug system faults by analysing
the kernel panic and OOPS messages. Finally, we will have some hands-on experience in using the
GDB and STRACE tools for debugging and fixing drivers and kernel issues

 Module Topics

 Overview of Debug support in Kernel
 Debug using Printing

o printk and its priorities
 Debug using logging

o Klogd, syslogd, system map
 Debug using Querying

o procfs, debugfs, sysfs
 Debug using Watching

o Using Strace
 Debugging System Faults

o Kernel Panic, OOPS Messages
 Debug Tools

o Using gdb, kgdb

Module - 6

 Module Title
Embedded Device Driver Frameworks

 Module Overview

This module introduces some of the standard embedded device driver frameworks present in Linux
systems for interfacing the hardware devices with the Linux system. We shall begin with the GPIO
APIs available in Linux kernel for export, access, read and write of GPIO values. Next, we shall
understand the I2C bus driver for communicating with low-speed i2c devices like memory and RTC.
Next, we explore the SPI driver subsystem comprising of core, controller, and protocol driver
subsystems in Linux. We shall also dwell deep into understanding the TTY framework for
communication with typical serial port devices like UART, Modem etc. Finally, we will end this module
by going deep into the USB driver framework. We will understand the typical USB device classes and
gadget drivers available in Linux kernel for enumeration and communication with typical USB device
types

 Module Topics
 Overview of driver frameworks for interfacing with Hardware
 Overview of GPIO framework
 Overview of I2C framework
 Overview of SPI framework
 Overview of TTY framework
 Overview of USB framework

Module - 7

